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Abstract 

In this paper, we derive a sharp observability inequality for Kirchhoff plate equations with lower order terms. 

More precisely, for any T > 0 and suitable boundary observation domains (satisfying the geometric 

conditions that the multiplier method imposes), we prove an estimate with an explicit observability constant 

for Kirchhoff plate systems with an arbitrary finite number of components and in any space dimension with 

lower order bounded potentials. 
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 1 Introduction 

Let n > 1 and N > 1 be two integers. Let  be a bounded domain in n with C4 boundary , 0 be a 

nonempty open subset of , and T > 0 be given and sufficiently large. 

Put Q  (0,T)× ,   (0,T)× and 0  (0,T)×0. For simplicity, we will use the notation yi = , 

where xi is the i-th coordinate of a generic point x = (x1,...,xn) in n. Throughout this paper, we will use C = 

C(T, ,0) and C* = C*(,0) to denote generic positive constants depending on their arguments which may 

vary from line to line. 

Set 

 

We consider the following N-valued plate system with a potential a  L(0,T; Lp(; N×N)) for 

some p  [n/3,]: 

 

http://www.jetir.org/


© 2020 JETIR April 2020, Volume 7, Issue 4                                                                        www.jetir.org (ISSN-2349-5162) 

JETIR2004044 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 300 
 

where y = (y1,...,yN)T, and the initial datum (y0,y1) is supposed to belong to  { H3()| | = | = 

0}N×(H2() ())N, the state space of system (1). It is easy to show that system (1) admits one and only 

one weak solution y  C([0,T]; ). 

In what follows, we shall denote by |·|, ||·||p and |||·|||p the (canonical) norms on N, L(0,T;Lp(; N×N)) 

and L(0,T;W1,p(; N×N)), respectively. 

We shall study the observability constant K(a) of system (1), defined as the smallest (possibly infinite) 

constant such that the following observability estimate for system (1) holds: 

 

This inequality, the so-called observability inequality, allows estimating thetotal energy of solutions in terms 

of the energy localized in the observation subdomain 0. It is relevant for control problems. In particular, in 

this linear setting, this (observability) inequality is equivalent to the so-called exact controllability property, 

i.e., that of driving solutions to rest by means of control forces localized in 0 (see [6, 11]). This type of 

inequality, with explicit estimates on the observability constant, is also relevant for the control of semilinear 

problems ([10]). Similar inequalities are also useful for solving a variety of Inverse Problems ([9]). We 

remark that, as for the wave equations, (2) holds for the Kirchhoff plate only if (,0,T) satisfies suitable 

conditions, i. e. 0 needs to satisfy certain geometric conditions and T needs to be large enough. 

Obviously the observability constant K(a) in (2) not only depends on the potential a, but also on the 

domains  and 0 and on the time T. The main purpose of this paper is to analyze only its explicit and sharp 

dependence on the potential a. 

The main tools to derive the explicit observability estimates are the so-called Carleman inequalities. Here we 

have chosen to work in the space  in which Carleman inequalities can be applied more naturally. But some 

other choices of the state space are possible. For example, one may consider similar problems in state 

spaces of the form ( ())N×(L2())N or (H2() ())N×( ())N where the Kirchhoff plate system is 

also well posed. But the corresponding analysis on the observability constants, in turn, is technically more 

involved. 

One of the key points to derive inequality (2) for system (1) is the possibility of decomposing the Kirchhoff 

plate operator as follows: 

 

where I is the identity operator. Actually, we set 

 

where y is the solution of (1). By the first equation of (1) and noting (3), it follows that 

– ay = ytt + 2y – ytt = (tt – )(y – y) + y = ztt – z + y – z. 

Therefore the Kirchhoff plate system (1) can be written equivalently as the following coupled elliptic-wave 
system 
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Consequently, in order to derive the desired observability inequality for system (1), it is natural to proceed in 

cascade by applying the global Carleman estimates to the second order operators in the two equations in 

system (5). We refer to [2, 3] for related works on Carleman inequalities for other cascade systems of partial 

differential equations. 

Similar (boundary and/or internal) observability problems (in suitable spaces) have been considered for the 

heat and wave equations in [1], and for the Euler-Bernoulli plate equations in [5]. According to [1] and [5], 

the sharp observability constants for the heat, wave and Euler-Bernoulli plate equations with bounded 

potentials a (i.e., p = ) contain respectively the product of the following two terms (Recall 

that C* = C*(,0) and C = C(T, ,0)) 

 

and 

 

As explained in [1, 5], the role that each of these constants plays in the observability inequality is of 

different nature: H1(T, a), W1(T, a) and P1(T, a) are the constants which arise when applying Gronwall's 

inequality to establish the energy estimates for solutions of evolution equations; while H2(T, a), W2(T, a) 

and P2(T, a) appear when using global Carleman estimates to derive the observability inequality by 

absorbing the undesired lower order terms. 

It is shown in [1, Theorems 1.1 and 1.2] and [5, Theorem 3] that the above observability constants are 

optimal for the heat, wave and Euler-Bernoulli plate systems (N > 2) with bounded potentials, in even 
dimensions n > 2. The proof of this optimality result uses the following two key ingredients: 

1) For the heat and Euler-Bernoulli plate equations, because of the infinite speed of propagation, one can 

choose T as small as one likes and henceforth H 1(T, a) and P 1(T, a) can be bounded above by H 2(T, a) 

and P 2(T, a), respectively for T = O( ) and O( ). On the other hand, for the wave equation, 

although one has to take T to be large enough (because of the finite velocity of propagation), for any 

finite T, W1(T, a) can bounded by W 2(T, a) because the power 1/2 for ||a|| in W 1(T, a), given by the 

modified energy estimate, is smaller than 2/3, the power for ||a|| in W 2(T, a), arising from the Carleman 

estimate. In this way, for any finite T large enough, one gets an upper bound on the observability constant 

(for the wave equation) of the order of exp(C ). 

2) Based on the Meshkov's construction [8] which allows finding potentials and non-trivial solutions for 

elliptic systems decaying at infinity in a superexponential way, one can construct a family of solutions (for 

the heat, wave and Euler-Bernoulli plate equations) with suitable localization properties showing that most of 

the energy is concentrated away from the observation domain. According to this, the observed energies 

grow exponentially as exp(- ) for the wave and heat systems and as exp(- ) for the Euler-

Bernoulli plate ones. 
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Things are more complicated for the Kirchhoff plate systems under consideration. Indeed, on one hand, due 

to the finite speed of propagation, one has to choose the observability time T to be large enough. On the 

other hand, a modified energy estimate for the Kirchhoff plate systems (see (10) in Lemma 1 in Section 2) 

yields a power 1/2 for ||a|| which can not be absorbed by the one, 1/3, arising from the Carleman 

estimate. To overcome this difficulty, the key observation in this paper is that, although T has to be taken to 

be large, one can manage to use the indispensable energy estimate only in a very short time interval when 

deriving the desired observability estimate. However, we do not know how to show the optimality of the 

observability constant at this moment. Indeed, when proving the optimality, the energy estimate has to be 

used in the whole time duration [0,T] and this breaks down the concentration effect that Meshkov's 

construction guarantees, which is valid only for very small time durations for the Kirchhoff plate systems. 

Therefore, proving the optimality of the observability estimates obtained in this paper is an interesting open 
problem. 

The rest of this paper is organized as follows. In Section 2 we give some preliminary energy estimate for 

Kirchhoff plate systems, and show some fundamental weighted pointwise estimates for the wave and elliptic 

operators. In Section 3 we present the sharp observability estimate for the Kirchhoff plate system. In Section 

4 we explain more carefully the main difficulty to show the optimality of the observability constant for 
Kirchhoff plate systems by means of the above mentioned Meshkov's construction. 

  

2 Preliminaries 

In this section, we show some preliminary energy estimates for Kirchhoff plate systems, and weighted 

pointwise estimates for the wave and elliptic operators. The estimates for the Kirchhoff plate system will 

then be obtained by noting the equivalence between system (1) and the coupled wave-elliptic system (5). 

2.1 Energy estimates for Kirchhoff plate systems 

Denote the energy of system (1) by 

 

Note that this energy is equivalent to the square of the norm in . For 

 

consider also the modified energy function: 

 

It is clear that both energies are equivalent. Indeed, 

 

The following estimate holds for the modified energy: 

Lemma 1. Let a  L(0,T;Lp(; N×N)) for some p  [n/3,]. Then there is a constant C0 = C0(,p,n) > 

0, independent of T, such that 
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Proof. For simplicity, we assume N = 1. The same proof applies to a system with any finite number of 
components N. Using (8) and noting system (1), it is easy to see that 

 

Put p1 =  and p2 = . Noting that 

 

by Hölder's inequality and Sobolev's embedding theorem, and recalling (7)-(8) and 

observing s0p1 =  , we get 

 

Similarly, 

 

Now, combining (11)-(13), and applying Gronwall's inequality, we conclude the desired estimate (10). 

 

2.2 Pointwise weighted estimates for the wave and elliptic operators 

In this subsection, we present some pointwise weighted estimates for the wave and elliptic equations that 
will play a key role when deriving the sharp observability estimates for the Kirchhoff plate system. 
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First, we show a pointwise weighted estimate for the wave operator ''tt-''. For this, for any (large)  > 0, 

any x0  n and c  , set 

 

By taking (aij)n×n = I, the identity matrix, and  = (with  given by (14)) in [4, Corollary 4.1] (see also [7, 

Lemma 5.1]), one has the following pointwise weighted estimate for the wave operator. 

Lemma 2. For any u = u(t,x)  C2( 1+n), any k   and v  u, it holds 

 

where 

 

As a consequence of Lemma 2, we have the following pointwise weighted estimate for the elliptic operator. 

Corollary 1. Let p = p(t,x)  C2( 1+n), and set q = p. Then 

 

where 

 

Proof. We fix an arbitrary t  [0,T] and view the corresponding function which depends on x as a function of 

(x,s) with s being a fictitious time parameter. We then set 
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where  = eL and L = |x-x0|2. Choosing c = 0 in (14), and applying Lemma 2 (with k = 0) in the variable 

(x,s) to the above U and V, we get 

 

with ,  and  given by (18). Now, for any c  , multiplying both sides of (19) by , noting 

 

the desired inequality (17) follows. 

 

Remark. The key point in Corollary 1 is that we choose the same weight  in (17) as that in (15). This will 

play a key role in the sequel when we deduce the sharp observability estimate for Kirchhoff plates. 

In the sequel, for simplicity, we assume x0  n \  (For the general case where, possibly, x0  , we can 

modify an argument in [7, Case 2 in the proof of Theorem 5.1] to derive the same result). Hence 

 

Also, for any  > 0, we set 

 

It is easy to see that (t) decays rapidly to 0 as t  0 or t  T. The desired pointwise Carleman-type 

estimate with singular weight  for the wave operator reads as follows: 

Theorem 1. Let u  C2([0,T]× ) and v = u. Then there exist four constants T0 > 0, 0 > 0, 0 > 0 and 

c0 > 0, independent of u, such that for all T > T0,  (0,0) and  > 0 it holds 

 

with A and  given by (16). 

Remark. The main difference between the pointwise estimates (15) and (22) is that we introduce a singular 

''pointwise'' weight in (22). As we will see later, this point plays a crucial role in the proof of Theorem 3 in 
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the next section. Another difference between (15) and (22) is that T is arbitrary in the former estimate; 

while for the later one needs to take T0, and hence T, to be large enough. 

Proof of Theorem 1. The proof is divided into several steps. 

Step 1. We multiply both sides of inequality (15) by . Obviously, we have (recall (16) for A and ) 

 

Note that 

 

Thus by (15), and using (23)-(24), we get 

 

where B is given by (16). 
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Step 2. Recalling that  and  are given respectively by (14) and (16), we get 

 

where 

 

 

and 

 

Thus, by (25) and (26), we have 
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Step 3. Let us show that F1, F2 and G are positive when  is large enough. For this purpose, we 

choose c  (0,1) sufficiently small so that 

 

and T( > 2R1) sufficiently large such that 

 

Also, we choose 

 

By (33) and recalling that c  (0,4/5), it is easy to see that the nonsingular part   2(1-k) 

of F1 (resp.   2(k+3-4c) of F1) is positive. Using (33) again, the nonsingular part of G reads 

 

which, via the first inequality in (32), is positive provided that  is sufficiently large. 

When t is near 0 and T, i.e., t  I0  (0,0)(T-0,T) for some sufficiently small 0  (0,T/2), the dominant 

terms in Fi (i = 1,2) and G are the singular ones. For t  I0, the singular part of F1 reads 

 

which, via the second inequality in (32), is positive provided that both 0 and -1 are sufficiently small. 

Similarly, for t  I0, the singular part of F2, 

 

is positive provided that 0 is sufficiently small. Also, for t  I0, the singular part of G reads 

 

It is easy to see that, for t  I0, it holds 
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which, via the second inequality in (32), is positive provided that both 0 and -1 are sufficiently small. 

By (27)-(29), we see that and G = G0+G1. Since ,  and G0 are positive, 

by the above argument, we see that F1, F2 and G are positive for t I0. For t  (0,T)\I0, noting again the 

positivity of ,  and G0, one can choose  > 0 sufficiently small such that ,  and G1 are very small, 

hence so that F1, F2 and G are positive. Hence (30) yields the desired (22). This completes the proof of 
Theorem 1. 

Similar to Theorem 1, by multiplying both sides of (17) by , we have 

Theorem 2. Let p = p(t,x) C2([0,T]× ), and set q = p. Then there exist two constants 0 > 0 and c0 > 

0, independent of p, such that for all T > 0,  > 0 and  > 0 it holds 

 

with  and  given by (18). 
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